Anatomy and Physiology II Exam 1 Review

- 1. Mix and Match the endocrine gland location with their name from the mix and match list
- 2. What glands produce steroid hormones and what glands produce protein type hormones? Which gland produces amino acid hormones that are fat soluble and cross cell membranes. What glands produce fat soluble hormones and what is the significance of hormones being fat soluble?

Gland	Hormone Type	Fat Soluble
Hypothalamus	Peptide	No
Pituitary	Protein	No
	Peptide	No
Pineal	Amino acid	No
Thyroid	Amino acid	(T3 & T4)Yes
Parathyroid	Peptide	No
Thymus	Peptide	No
Adrenal	Steroids	Yes
	Amino acid	No
Pancreas	Protein	No
Digestive System	Protein & Peptide	No
Testes / Ovaries	Steroid (One Protein	Steroid Yes
	in ovaries)	Protein No

- 3. Both nerves and hormones produce signals that control body function. Contrast the signals from nerves and hormones with respect to their speed and how long the affects of the signal last.
 - Hormones: Responses take longer then to nerve signals, duration is also longer. Used for slow responses like onset of puberty.

Nerve signals: Responses are rapid, duration is very short like a pain signal. Used for rapid response with a short duration.

4. Explain in detail how protein or steroid type hormones work at the cellular level.

<u>Steroid:</u>

- Fat soluble and readily crosses cell membranes.
- Produced by:
 - Adrenal cortex
 - o <u>Testes</u>
 - o <u>Ovaries</u>
 - The thyroid hormones (T3 & T4) also work like steroid hormones

- <u>How work:</u>
 - Move across cell membrane and into nucleus of cell
 - Bond with protein receptors in nucleus
 - The steroid-protein complex then bonds with regulatory segments on the DNA and acts by turning genes on/off. This causes them to control the synthesis of proteins.

Protein (also amino acid & peptide):

- Long chains of amino acids, not fat soluble
- <u>Produced by:</u>
 - Anterior pituitary
 - o <u>Pancreas</u>
 - Digestive System
 - o Ovaries(one only)
- <u>How work:</u>
 - Hormone bonds to G-protein receptor site on cell membrane
 - Adenylate cyclase is activated, convertes ATP to C-AMP. NOTE: cyclic guanosine monophosphate (C-GMP) is another secondary messenger used by some hormones.
 - <u>C-AMP activates Kinase "A"</u>
 - <u>Kinase "A" catalyzes the addition of phosphates to</u> <u>enzymes, activating the enzyme in the cell</u>
 - The activated enzyme changes the cell functions
 - The enzyme calmodulin is also activated and it converts the C-AMP back to ATP, aiding in stopping the effect of the hormone.
- 5. For the following hormones, know where they are produced, the target tissues they affect, what effects they have, and how they are regulated. Know the hormone related diseases and their symptoms.

Pituitary gland and Hypothalamus gland interaction

Anterior	Hypothalamus	Hypothalamus	Tissue	Diseases
Pituitary	Release	Inhibition	And	
Gland	Trigger	Trigger	Effect	
hGH	GHRH	GHIH	Blood sugar	Dwarfism,
			levels,	Giantism,
			protein	Acromegaly
			synthesis,	
			etc.	
FSH + LH	GnRH ↑	GnRH ↓	Body	
			maturation,	
			follicle	
			development	
			in ovaries,	
			sperm	
			production	
			in testes	

PRL	PRH	PIH	Initiates	
			milk	
			production	
			in women,	
			unclear in	
			men	

Other pituitary gland hormones

Pituitary	Effect	Notes
TSH (anterior)	Thyroid increases	
	production of T3& T4	
	hormones	
ACTH (anterior)	Adrenal cortex gland	
	to release	
	glucocorticoids	
	(cortisol,	
	cortisone, and	
	corticosterone)	
MSH (anterior)	Melanocytes increase	Triggered by UV
	productivity of	exposure.
	melanin	
Oxytocin/OT	Contracts uterus	
(Posterior)	during birth,	
	contracts mammary	
	glands during breast	
	feeding	
ADH (Posterior)	Causes body to	Disease:
	retain water (blood	Diabetes Insipidus
	plasma).	

[gland] Hormone	Effect	Releaes	Inhibition	Disease/Notes
[pineal]	High levels help	Night: Darkness	Day:	
Melatonin	you go to sleep	reduces the	Photoreceptors	
		levels of	on eyes cause	
		norepinephrine,	the sympathetic	
		reducing the	nervous system	
		inhabitation of	to produce	
		melatonin	norepinehrine,	
			inhibiting the	
			release of	
			melatonin	
[Thyroid]	↑ basal metabolic	Trigger: Low	Trigger: High	Cretinism,
ТЗ& Т4	rate & O ₂ usage	blood levels of	blood lvl of T3	Myxedema,
	↑ cellular	ТЗ & Т4	& T4	Graves disease,
	metabolism	1. Hypothalamus	1. Hypothalamus	Goiter
	↑ growth &	releases TRH	inhibits release	
	development	2. Pituitary	of TRH	ТЗ =
	↑ use of glucose	releases TSH	2. Pituitary	triiodothyronine
	for ATP creation	3. Thyroid	inhibits release	(3 iodine)
	↑ protein	releases T3 & T4	of TSH	T4 =
	synthysis	Effect: ↑ blood	3. Thyroid	Tetraiodothyronine
	↑ actions of	lvl of T3 & T4	reduces	(4 iodine)
	epinephrine &		releasing T3 &	
	norepinephrine		T4	
	through up		Effect: ↓ blood	
	regulation of		lvl of T3 & T4	
	beta receptors			
[Thyroid]	\downarrow blood Ca ⁺⁺ and	↑ blood lvls of	↓Blood lvls of	
Calcitonin (CT)	HPO4 ²⁻ lvls	Ca++	Ca++	
	↑ Activity of			
	osteocytes (bone			
	production)			
	↓ Activity of			
	osteoclasts (bone			

	breakdown)			
[Parathyroid]	↑ blood Ca ⁺⁺ and	↓Blood lvls of Ca ⁺	↑ blood lvls of	Hypoparathyroidism
Parathyroid (PTH)	HPO4 ²⁻ lvls	+	Ca++	
_	↓ Activity of			
	osteocytes (bone			
	production)			
	↑ Activity of			
	osteoclasts (bone			
	breakdown)			
	↑ reabsorption of			
	Ca ⁺⁺ and Mg ⁺⁺ in			
	the kidney			
	Promotes the			
	formation of			
	hormone			
	calcitriol from			
	Vitamin D in the			
	kidneys.			
	Calcitriol			
	increases the			
	absorption of Ca ⁺			
	⁺ , HPO ₄ ²⁻ , and Mg ⁺⁺			
	in the gut.			
[Thymus] Thymosin,	All of these			
Thymic hormonal	hormones promote			
factor (THF), Thymic	the maturation			
factor (TF), and	and development			
Thymopoietin	of immune system			
	cells (i.e. T-			
	cells and B-			
	cells).			
[Adrenal Cortex -	Triggers the	Trigger:	Trigger:	
Mineralocorticoid	reabsorption of	Angiotensin II	Low Angiotensin	
group]	Na ⁺⁺ from the		II	

Aldortorono	uring to the	Stopa.		
AIdosterone				
	blood in the	L. LOU WOL . I	Other	
	kidneys.	pressure reduces	aldosterone	
	Cl⁻ and HCO₃⁻ are	the filtration	release	
	reabsorbed due to	rate at the	mechanisms:	
	the osmotic	kidneys, reducing	– High blood K+	
	gradient created	urine levels of	or low blood Na ⁺	
	by moving the	Cl-	can also trigger	
	ions above. This	2. Low lvls of Cl^{-}	aldosterone	
	increases blood	in the urine	release	
	pressure.	trigger the	- Low blood K ⁺ or	
	H ⁺ excretion to	juxtaglomerular	high blood Na⁺	
	the urine is	apparatus	can inhibit	
	promoted,	(located in the	aldosterone	
	preventing blood	distal convoluted	release.	
	acidosis.	tubule of the		
		kidnev) to		
		release rennin.		
		3. Renin causes		
		the plasma		
		protein		
		angiotensinogen		
		to form		
		angiotensin T		
		T. Angiocensin i		
		hland to the		
		biood to the		
		lungs where the		
		enzyme		
		anglotensin		
		converting enzyme		
		(ACE) converts it		
		to angiotensin II		
		5. Angiotensin II		

3/26/2010

		taigagana		
		LI Iggers		
		aldosterone		
		release from the		
		adrenal cortex		
		and causes		
		vasoconstriction		
		increasing the		
		blood pressure.		
		6. Increased		
		blood pressure		
		increases the		
		filtration rate		
		at the kidneys		
		increasing the		
		amount of Cl ⁻ in		
		the urine and		
		hence reducing		
		the release of		
		rennin.		
[Adrenal cortex -	↑ protein	Trigger: Low	Trigger: High	NOTE: CRH is also
Glucocorticoid group	catabolism in	blood lvls of	blood lvls of	released in
Cortisol	muscle to	glucocorticoids	alucocorticoids	response to
(hvdrocortisone).	increase blood	1. Hypothalamus:	1. Hypothalamus:	emotional or
Corticosterone.	amino acid lvls	releases CRH	inhibits release	physical stressors
Cortisone	for production of	2. Pituitary:	of CRH	that take the body
	enzymes	releases ACTH	2. Pituitary:	away from
	t use of amino	3. Adrenal	inhibits release	homeostasis
	acids or lactic	cortex: releases	of ACTH	(general
	acids in liver to	alucocorticoids	Effect · Blood	adaptation
	make glucose	Effect, Blood	lyls of	syndrome) Reduces
	(i A	lyls of	alucocorticoide	the bodies immune
	dluconeogenesis	alucocorticoide	decrease	response to deal
	making of alucase	increase	accrease	with some
	from other ther	THETEASE		immodiate
	TTOM OTHER THEN			Tunnearace

	glycogens)		stressor. Explains
	↑ lipolysis -		how stressors
	break down of		increase disease.
	triglycerides and		Treatment uses:
	release of fatty		1. Hydrocortisone
	acids		(cortisol) is used
	↑ blood glucose		to treat chronic
	lvls		inflammation.
	↑ sensitivity of		2. Glucocorticoids
	blood vessels to		are used to reduce
	compounds that		the immune
	cause		response in
	vasoconstriction		patients that have
	↓ inflammatory		had an organ
	response		transplant,
	↓ number of mast		reduces the
	cells		rejections.
	↓ reduce		
	histamine release		Disease:
	↓ capillary		Addison's disease,
	permeability		Cushing's
	↓ phagocytosis of		syndrome,
	dead and foreign		Hyperglycemia,
	cells		Osteoporosis,
	↓ connective		Poor wound
	tissue formation		healing,
	↓ immune response		Mood swings
[Adrenal cortex -	In Men causes the	It is unclear how	Congenital adrenal
Androgen group]	development of	DHEA is regulated	hyperplasia
Dehydroepiandosterone	secondary sex	but its release	
(DHEA)	characteristics.	appears to be	
Androgens are male	In Women DHEA is	triggered by ACTH	
sex hormones, two	converted into		
main are testosterone	estrogen by		

from the testes and	various bodv			
dehvdroepiandosterone	tissues and can			
produced by the	be an important			
adrenal cortex	source of			
	estrogen in post			
	menopausal women.			
	Mav also			
	contribute to sex			
	drive in women.			
	In prepuberty			
	boys and girls			
	will cause growth			
	spurts and growth			
	of pubic hair			
[Adrenal medulla]	Same effect as	Stimulated by the		
epinephrine	the sympathetic	sympathetic		
(adrenaline)	nervous system	preganglionic		
norepinephrine (NE)		nerves when the		
		sympathetic		
		nervous system is		
		activated. Most		
		(80%) of the		
		hormone released		
		is epinephrine		
[Pancreas - Islets of	Increases blood	Low blood sugar	High blood sugar	
Langerhans - Alpha	sugar lvl by	lvl stimulates	lvl inhibits the	
cells]	causing the liver	the release of	release of	
Glucagon	to convert	glucagons	glucagons	
	glycogen to			
	glucose			
	Promotes the			
	formation of			
	glucose in the			
	liver from amino			

				1
	acids and lactic			
	acid			
	(gluconeogenesis)			
[Pancreas - Islets of	Decreases blood	High blood sugar	Low blood sugar	Other factors
Langerhans - Beta	sugar lvls by	lvls stimulates	lvls inhibits	which may cause
cells]	causing the liver	insulin release	insulin release	insulin release:
Insulin	to convert			1. Acetylcholine
	glucose to			from
	glycogen			parasympathetic
	Accelerates			vegas nerve
	facilitated			stimulates the
	diffusion of			release of insulin
	glucose into			2. Food high in
	cells,			carbohydrates
	particularly			raise blood sugar
	skeletal muscle			triggering insulin
	Increases			release
	movement of amino			3. Food high in
	acids into cells			proteins increase
	and promotes			blood levels of
	protein synthesis			the amino acids,
	Increases			arginine and
	synthesis of			leucine,
	fatty acids			triggering insulin
				release.
				4. hGH and ACTH
				stimulate insulin
				release because
				they raise blood
				sugar lvls.
				Diseases:
				Diabetes mellitus
				(Type I & Type II)

3/26/2010

Page 11

[Pancreas - Islets of	Inhibits the	Low lvls of	High lvls of	
Langerhans – Delta	secretion of	pancreatic	pancreatic	
cells]	insulin and	polypeptide	polypeptide	
Somatostatin	glucagons	increase the	inhibit the	
	Slows the	release of	release of	
	absorption of	somatostatin	somatostatin	
	nutrients from			
	the gut			
	Overall reduces			
	digestion			
[Pancreas - Islets of	Inhibits release	Acute	High blood	Note: Usually the
Langerhans - F-cells]	of somatostatin	hypoglycemia	glucose	release triggers
Pancreatic	Causes	Fasting	High	override the
polypeptide	contraction of	Exercise	somatostatin	inhibitory effect
	the gallbladder	Diets high in		of somatostatin
	and secretion of	protein		
	pancreatic			
	digestive enzymes			
	Overall increases			
	digestion			
[Eicosanoids]	Many effects, act	Some are released	Asprin and	
Prostaglandins	somewhat similar	when tissues are	Ibuprofen	
	to	damaged or	inhibit	
	neurotransmitters	irritated,	prostaglandins	
		triggering the		
		nerve signals		
		that cause pain		

Hormone Related Diseases

Hormone	Disease	Details
Dwarfism	hGH	Hyposecretion of hGH before puberty. Causes person to be
		short.
Giantism	hGH	Hypersecretion of hGH before puberty. Causes person to be
		tall.
Acromegaly	hGH	Hypersecretion of hGH after puberty. Causes bones to enlarge
		in diameter because they can no longer grow in length.
Diabetes insipidus	ADH	Brain damage causes low ADH lvls or the kidney receptors for
		ADH do not respond.
		SxS: This causes the person to produce large amounts of dilute
		urine, dehydrating the body.
Cretinism	Т3 & Т4	Low T3/T4 lvls during development causes mental retardation
		and dwarfism
Myxedema	T3 & T4	Low T3/T4 in adults causes the following:
		SxS:
		Edema of the face
		Slow heart beat, low body temp, low metabolic rate
		Dry skin and hair
		Muscular weakness
		Mental dullness
Graves Disease	T3 & T4	An autoimmune disease where immunoglobulins mimic the actions
		of TSH.
		SxS:
		Exophtyalmos (eyes protrude)
		Thyroid gland 2x-3x normal size
		Increased metabolic rate
		Increased heart rate
		Weight loss despite a good appetite
		Insomnia
		No heat tolerance (i.e. body overheats easily)
Goiter	T3 & T4	Excessive growth of the thyroid gland usually caused by a diet
		low in iodine

Hypoparathyroidism	PTH	Low blood PTH lvl due to parathyroid dmg, causes blood calcium
		lvls to be abnormally low. This reduces extracellular Ca++ to
		the point that skeletal muscle can depolarize and contract. It
		causes tetany (i.e. sustained contraction) in skeletal muscle
		because most of the calcium for contractions is stored in the
		sarcoplasmic reticulum. In smooth muscle and cardiac muscle it
		can cause depolarization and contraction, but it reduces the
		force of contractions because most of the calcium that causes
		muscle contractions come from outside the cell. These effects
		can cause serious heart arrhythmia to occur.
Addison's Disease	Glucocorticoid	Hyposecretion of glucocoticoids which causes the following
	group of the	SxS:
	Adrenal cortex	Mental dullness
	hormones	Anorexia
		Nausea
		Weight loss
		Hypoglycemia
		Muscle weakness
		Low aldosterone
		ACTH may be high due to a lack of negative feedback and it may
		mimic the effects of melanin stimulating hormone, increasing
		skin pigmentation
Cushing's Syndrome	Glucocorticoid	Hypersecretion of glucocorticoids which causes the following
	group of the	Sxs:
	Adrenal cortex	Fat redistribution: fat puffy face and thin spindly arms and
	hormones	legs due to muscle catabolism
		Buffalo hump on back
		Large pendulous hanging abdomen
		Flushed facial skin
		Hyperglycemia
		Osteoporosis
		Poor wound healing
		Mood swings
Congenital adrenal	Androgen group	Hypersecretion of DHEA which causes the following SxS in

humorplagia	of the advanal	women :
IIYPEIPIASIA		
	cortex	Deep Voice
	hormones	Baldness
		Atrophy of the breast
		Infrequent menstruation
		This disease has little effect on adult men. In boys it causes
		early development of secondary sex characteristics.
Diabetes mellitus	Insulin	A disease caused by improper regulation of insulin with the
		following SxS:
		High blood sugar
		High sugar in the urine
		Excessive thirst (polydipsia)
		Excessive eating (polyphagia)
Diabetes mellitus	Insulin	Autoimmune disease that leads to the destruction of beta
Type I		cells. Usually occurs in young people. Because glucose doesn't
AKA Juvenile onset		move into the cells, cells burn fatty acids raising the levels
		of blood ketones causing ketoacidosis (low blood pH).
		Treatment - inject insulin
		Insulin shock – too much insulin injected, blood sugar lvl
		drops too low.
Diabetes mellitus	Insulin	Person has the proper amount of insulin in the blood stream,
Type II		but the target cells in the body are less sensitive to insulin
AKA Adult onset		due to down regulation.
		This type of diabetes represents 90% of cases and usually can
		be controlled by exercise and loss of weight

3/26/2010

Page 15